مدرسة الفيزياء و الكيمياء
السلام عليكم . مرحبا بك في مدرستك الثانية حيث يمكنك تعلم اساسيات علم الفيزياء و علم الكيمياء
اذا كانت هذه زيارتك الاولى فلا تتردد بالتسجيل . اما اذا كنت عضوا فتفضل بالدخول بالنقر على الخانة ادناه


 
الرئيسيةاليوميةس .و .جالتسجيلدخول

شاطر | 
 

 معادلة شرودنغر

استعرض الموضوع السابق استعرض الموضوع التالي اذهب الى الأسفل 
كاتب الموضوعرسالة
einstein
فيزيائي نشيط


عدد المساهمات : 96
تاريخ التسجيل : 16/09/2010
العمر : 22
الموقع : morocco

مُساهمةموضوع: معادلة شرودنغر   الثلاثاء سبتمبر 28, 2010 6:31 am

ظهرت معادلة شرودنغر عام 1925 على يد الفيزيائي النمساوي إرفين شرودنغر لتصف حالات النظم الكمومية المعتمدة على الزمن. وتحتل هذه المعادلة أهمية خاصة في ميكانيكا الكم حيث تعتبر بمثابة قانون التحريك الثاني لنيوتن الذي يعتبر أساسيا في الفيزياء الكلاسيكية.

حسب التعبير الرياضي لميكانيكا الكم، تترافق كل جملة فيزيائية مع فضاء هلبرت المركب (المعقد Complex) (وهو عبارة عن فضاء شعاعي) حيث توصف كل حالة لحظية للجملة بشعاع وحدة في هذا الفضاء الشعاعي، وبالتالي يكون شعاع الحالة بمثابة ترميز (تشفير encoding) لاحتمالات النتائج الممكنة من عمليات القياس بكافة أشكالها على هذه الجملة. عندما تتغير هذه الجملة مع الزمن, يصبح شعاع الحالة هذا بمثابة تابع للزمن (دالة زمنية).

أعداد الكم الناتجة عن حل معادلة شرودنغر :

1. عدد الكم الرئيس n
2. عدد الكم الفرعي l
3. عدد الكم المغناطيسي ml
4. عدد الكم المغزلي ms

H(t) \left| \psi (t) \right\rangle = i \hbar {\partial\over\partial t} \left| \psi (t) \right\rangle

أعداد الكم الناتجة. وقد أوضح فيما بعد شرودنجر مفهوم الأوربيتال واستخدمه محل المدار بمفهوم نيلس بوهر:

المدار:خط وهمى دائري حول النواة تدور فيه الإلكترونات على بعد ثابت ومحدد عن النواة.

الأوربيتال:منطقة قي الفراغ (منطقة من السحابة الالكترونية)يحتمل وجود الالكترونات بها.

وقد كانت المعادلة الموجية لشرودنجر ومبدأ عدم التأكد لهايزنبرج والطبيعة المزدوجة للألكترون لـدي بروجلي بمثابة المعاول التي عدلت من نظرية بوهر "الذي نجح في التوفيق بين نظرية ماكسويل ونموذج رذرفورد" والتي اعتمدت على مفهوم المدار وان الإلكترون لا يشع في الحالة المستقرة.

وهذا شرح لمعادلة شرودنجر :

Schrödinger Equation

معادلة شرودينجر


نعلم أن أي موجة تنتشر في اتجاه واحد x يمكن وصفها من خلال المعادلة التفاضلية التالية:

(1)

حيث F تمثل الدالة الموجية التي تعتمد على المكان x والزمن t. والسرعة vph2 تمثل سرعة الموجة (phase speed), فإذا كنا نتحدث على موجة صوتية مثلاً تنتشر في الهواء فإن الدالة الموجية F هي مقدار التغير في التضاغط والتخلخل في جزيئات الهواء والسرعة vph هي سرعة الصوت في الهواء وإذا كانت موجة ضوء فإن الدالة الموجية F هي التغير في المجال الكهربي والمغناطيسي والسرعة هي سرعة الضوء.

في حالة وصف جسيم بدالة موجية فإن مربع الدالة الموجية يعبر عن احتمالية رصد الجسيم في الفراغ في وحدة الزمن. وسوف نرمز لهذه الدالة الموجية بالرمز Y.

وحيث أن الدالة الموجية متغيرة في كل من المكان والزمان لذا سنفترض أنها تأخذ الصورة التالية:

Y(x,t) = y(x) f(t) (2)

عند صياغة معادلة شرودنجر نفترض نظام مكون من جسيم يتحرك في بعد واحد x وينتشر كموجة وان هذا الجسيم يتفاعل مع ما يحيط به ومرتبط به من خلال دالة الجهد V وله طاقة كلية E ثابتة وسوف نفترض أن التردد معروف بدقة n=h/E لذا فإن الدالة f تكون دالة جيبية على النحو التالي:

f(t) = cos 2pn t (3)

بالتعويض في المعادلة (1) بالدالة الموجية في المعادلة (2) نحصل على

بالتعويض في المعادلة (1) نحصل على

(4)

إذا كان الجسيم وكتلته m موجود في وسط له جهد V فتكون الطاقة الكلية E للجسيم والوسط هو مجموع طاقة الحركة Ek وطاقة الوضع الممثلة في الجهد V.

(5)

بالتعويض في المعادلة (4) من المعادلة (5)

(6)

وهذه معادلة شرودينجر في بعد واحد والتي تفترض أن الجسيم ينتشر على شكل موجة وتسمى بالمعادلة الموجية وحيث أن الجسيم يتفاعل مع المحيط الموجود به من خلال الجهد V.

باستخدام معادلة شرودينجر على جسيم مرتبط بجهد V أي أن القوة التي يؤثر بها الوسط على الجسيم المرتبط معروفة يمكن إيجاد الدالة الموجية ومستويات الطاقة المسموحة وكمية الحركة. وحيث أن مربع الدالة الموجية يعبر عن احتمالية تواجد الجسيم في مكان x في وحدة الزمن فإن الحل المقبول للدالة الموجية y يجب أن يحقق الشروط الحدية التي يفرضها الجهد V وهذه الشروط الحدية سوف تؤدي إلى تكميم الطاقة للجسيم أي أن تكون هناك قيم محدد فقط للطاقة مسموحة.

ولتوضيح هذا سوف نطبق معادلة شرودينجر على المثال السابق لجسيم في صندوق جهد لانهائي.

Particle in one dimensional potential well of infinite height

من أسهل التطبيقات على معادلة شرودينجر هو حل مشكلة جسيم موجود داخل صندوق ذو بعد واحد L وجدار الصندوق تمثل جهد V لانهائي بحيث لا يمكن للجسيم ان يفلت من هذا الجهد وبالتالي فإن الجسيم سيحدد وجوده في المسافة بين x=0 و x=L. حيث يتحرك بحرية في هذا المدى بجهد يساوي صفر وتكون التصادمات بين الجسيم وجدار الصندوق هي تصادمات مرنة لا يفقد فيها الجسيم طاقة.

بالتعويض عن قيمة الجهد V=0 في معادلة شرودنجر نحصل على

(7)

بإعادة ترتيب المعادلة على الشكل التالي:

(Cool

حيث أن

حيث أن الصندوق يمثل الجهد المطبق على الجسيم واعتبر أن جدار الصندوق ذات ارتفاع لانهائي بحيث لا يمكن للجسيم أن يتواجد خارج الصندوق لذا فإن الشروط الحدية هي:

V(x) = 0 for 0 < x < L V(x) = ¥ for 0 > x < L y(x) = 0 for 0 ³ x ³ L

والحل الذي يحقق المعادلة التفاضلية (7) يجب أن يكون متوافق مع الشروط الحدية السابقة أي أن

y(0) = 0 & y(L) = 0

والحل المناسب الذي يحقق تلك الشروط هو

y(x) = A sin Bx

نلاحظ أن الشرط y(0) = 0 محقق، ولكي يصبح الشرط الثاني y(L) = 0 محقق فإن BL=np حيث n عدد صحيح وبالتعويض عن B نحصل على

وعليه تكون الطاقة للجسيم داخل بئر الجهد هو

وتكون الدالة الموجية له هي

وهذه نفس النتائج التي حصلنا عليها في السابق والتي توضح أن الطاقة المسموحة للجسيممكممة
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
معادلة شرودنغر
استعرض الموضوع السابق استعرض الموضوع التالي الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
مدرسة الفيزياء و الكيمياء :: قسم الفيزياء الاساسية :: فيزياء الكم-
انتقل الى: